

PRACTICA N°2 DIODO ZENER

NOMBRES			
NOMBINE			

1. Objetivos

- Observar la curva característica del diodo zener
- Conocer el funcionamiento del diodo zener
- Diseñar un regulador de voltaje, usando diodo zener

2. Materiales

- Resistencia de : 100Ω a ½ Watt
- Diodo zener de 5,1V (1N4733A) o de 12V (1N4742A). Tenga en cuenta que estos diodos son de 1W

VER referencias

http://www.ladelec.com/teoria/informacion-tecnica/79-equivalencias-de-voltaje-zener-por-referencias

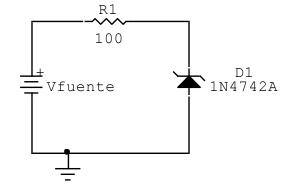
- Protoboard
- Fuente de voltaje
- Resistencia variable según sus cálculos

3. Hojas de especificaciones

4. Procedimiento

Parte 1 Curva característica del diodo zener

- Armar el circuito de la figura
- Variar el voltaje de la fuente según la tabla N°1
- Registre los valores medidos en la tabla N°1
- Dibuje la gráfica de corriente contra voltaje del diodo zener
- Simule el circuito , realizando el mismo procedimiento anterior



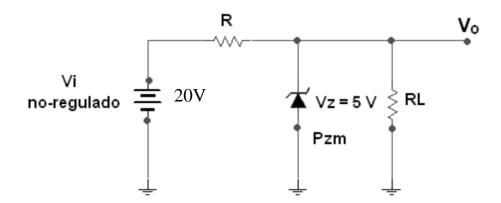

Figura 1

Tabla 1

SIMULACIÓN			MONTAJE			
V _{fuente} (V)	l (mA)	V _z (V)	V _{fuente} (V)	l (mA)	V _z (V)	
2			2			
5			5			
8			8			
10			10			
12			12			
15			15			
20			20			
22			22			

Parte 2 Regulador de voltaje

Figura 2

Diseñar un circuito regulador de voltaje a 5 V utilizando un diodo Zener y considerando un voltaje de entrada no regulado de 20V.

- Hallar R, RL
- Hallar la potencia de R, RL

Tabla 2

calculado	Medidas		
Variable	Variable		
VR	VR		
lR	l _R		
PR	PR		
V _R L	V _R L		
Irl	IRL		
Prl	Prl		
lz	lz		
Pz	Pz		

Parte 3 Diodo zener como regulador de voltaje

■ Diseñar el circuito regulador de tensión de la figura 3 para el caso de carga variable. La fuente de 20V,V_z=12V. calcular todos los datos. Tabla 3

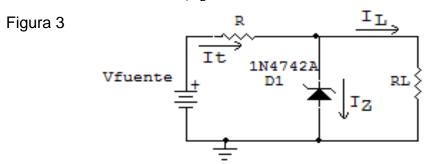


Tabla 3

Calculados		Medidas		
Variable		Variable		
V R		V R		
I R		I R		
PR		PR		
R _{Lmin}		R _{Lmin}		
R _{Lmáx}		R _{Lmáx}		
V RL		V RL		
I _{Lmin}		I _{Lmin}		
I _{Lmáx}		I _{Lmáx}		
P _{RL}		P _{RL}		
lz		lz		
Pz		Pz		

Conclusiones			
-			

NOTAS

- Realizar pre informe, es decir los cálculos.
- En los diseños los valores cálculos no siempre se consiguen comercialmente, por lo tanto trate de hacer aproximaciones con datos comerciales o haga uso de series, paralelos, trimmer etc.
- Por favor ser muy organizados
- En algunas ocasiones usted como diseñador, asume algunos datos como el valor de resistencias.